Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glyoxal oxidases: their nature and properties.

Identifieur interne : 000168 ( Main/Exploration ); précédent : 000167; suivant : 000169

Glyoxal oxidases: their nature and properties.

Auteurs : Marianne Daou [France] ; Craig B. Faulds [France]

Source :

RBID : pubmed:28390013

Descripteurs français

English descriptors

Abstract

H2O2 has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H2O2-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.

DOI: 10.1007/s11274-017-2254-1
PubMed: 28390013


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glyoxal oxidases: their nature and properties.</title>
<author>
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
<affiliation wicri:level="3">
<nlm:affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France. craig.faulds@univ-amu.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28390013</idno>
<idno type="pmid">28390013</idno>
<idno type="doi">10.1007/s11274-017-2254-1</idno>
<idno type="wicri:Area/Main/Corpus">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000163</idno>
<idno type="wicri:Area/Main/Curation">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000163</idno>
<idno type="wicri:Area/Main/Exploration">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glyoxal oxidases: their nature and properties.</title>
<author>
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
<affiliation wicri:level="3">
<nlm:affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France. craig.faulds@univ-amu.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille</wicri:regionArea>
<placeName>
<region type="region">Provence-Alpes-Côte d'Azur</region>
<region type="old region">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">World journal of microbiology & biotechnology</title>
<idno type="eISSN">1573-0972</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Aldehydes (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Fungi (enzymology)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Lignin (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Vitis (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Aldéhydes (métabolisme)</term>
<term>Champignons (enzymologie)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Vitis (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Aldehydes</term>
<term>Fungal Proteins</term>
<term>Hydrogen Peroxide</term>
<term>Lignin</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Champignons</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Fungi</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Aldéhydes</term>
<term>Lignine</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines fongiques</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Carbohydrate Metabolism</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Métabolisme glucidique</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">H
<sub>2</sub>
O
<sub>2</sub>
has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H
<sub>2</sub>
O
<sub>2</sub>
-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28390013</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-0972</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2017</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>World journal of microbiology & biotechnology</Title>
<ISOAbbreviation>World J Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glyoxal oxidases: their nature and properties.</ArticleTitle>
<Pagination>
<MedlinePgn>87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11274-017-2254-1</ELocationID>
<Abstract>
<AbstractText>H
<sub>2</sub>
O
<sub>2</sub>
has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H
<sub>2</sub>
O
<sub>2</sub>
-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Daou</LastName>
<ForeName>Marianne</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Faulds</LastName>
<ForeName>Craig B</ForeName>
<Initials>CB</Initials>
<AffiliationInfo>
<Affiliation>Aix Marseille University, INRA, UMR1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France. craig.faulds@univ-amu.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>World J Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>9012472</NlmUniqueID>
<ISSNLinking>0959-3993</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000447">Aldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000447" MajorTopicYN="N">Aldehydes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biomass</Keyword>
<Keyword MajorTopicYN="N">Detoxification</Keyword>
<Keyword MajorTopicYN="N">Filamentous fungi</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose degradation</Keyword>
<Keyword MajorTopicYN="N">Oxidoreductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28390013</ArticleId>
<ArticleId IdType="doi">10.1007/s11274-017-2254-1</ArticleId>
<ArticleId IdType="pii">10.1007/s11274-017-2254-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1999 Jul 1;341 ( Pt 1):113-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Jan 1;433(1):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15581579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2011 Mar;31(1):20-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(7):2272-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 18;6:10197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Jul 12;27(14):5365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3167051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2015 Aug;282(16):3218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25495853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 May;210(3):997-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26720747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jun;194(4):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22463738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Aug;101(16):6398-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Feb;93(4):1395-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22249717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Oct;140 ( Pt 10):2691-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8000540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Oct 10;257(19):11455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6288685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jul 29;82(16):4867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27260365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2012 Feb 10;50(2):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1999 Aug 5;64(3):290-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10397866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2008 Sep;106(3):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2004 May;93(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14987714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 18;15:486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24942338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Jan;64(1):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9435085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Feb 02;13:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jan;31(1):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9987124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Oct;100(19):4388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Sep 02;13:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2008 Feb;26(2):100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1412-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3536-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2013 May;6(5):826-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 May 20;238(5):794-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8182749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Feb;58(2):260-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11876421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:103-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26482946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jan 12;271(2):681-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jul;60(7):2524-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jan 28;6(1):16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomater Sci Polym Ed. 1996;7(8):715-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1967 Mar;119(1):588-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6069453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 Jun 16;53(25):6515-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24802551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1993 Mar;64(3):762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8386015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2209-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2012 Dec;40(4):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23323052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1985 Nov 1;242(2):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4062285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2011 Apr;248(2):415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20512385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Nov;72 :124-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24915038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2002;94(2):124-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16233281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jun;79(12):3770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23584789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7411-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Mar 7;350(6313):87-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2002850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jan;199:76-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26320388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2010 Mar;15(3):249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20094801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2017 Feb 20;474(5):809-825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28093470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Aug 1;469(3):433-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26205496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Feb;272(6):639-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Daou, Marianne" sort="Daou, Marianne" uniqKey="Daou M" first="Marianne" last="Daou">Marianne Daou</name>
</region>
<name sortKey="Faulds, Craig B" sort="Faulds, Craig B" uniqKey="Faulds C" first="Craig B" last="Faulds">Craig B. Faulds</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000168 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000168 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28390013
   |texte=   Glyoxal oxidases: their nature and properties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28390013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020